교차분석은 두 개 이상의 범주형 변수 간의 관계를 분석하는 통계 기법이다. 예를 들어, 성별과 선호하는 음료 종류 간의 관계, 학력 수준과 직업 만족도 간의 관계 등을 분석할 때 사용된다. 교차분석에서 가장 많이 사용되는 통계적 검정 방법으로는 카이제곱 검정과 피셔 검정이 있다. 이 두 검정은 비슷해 보이지만, 각각의 특징과 적용되는 상황이 다르다.
1. 카이제곱 검정
카이제곱 검정은 두 범주형 변수 간에 독립성이 있는지 검정하는 데 사용된다. 즉, 두 변수가 서로 관련이 없는지, 아니면 어떤 연관성이 있는지를 검정하는 것이다.
1) 원리 : 관찰된 빈도나 기대되는 빈도 사이의 차이를 계산해 카이제곱 통계량을 구하고, 이 값이 특정 분포를 따르는지 검정한다.
2) 장점 : 간단하고 직관적인 계산이며, 다양한 통계 소프트웨어에서 지원하고 있다.
3) 단점 : 기대 빈도가 작은 경우에는 정확도가 떨어지고, 표본 크기가 작을 때는 적절하지 않다.
4) 예시 : 성별(남자, 여자)과 스마트폰 사용 빈도(자주, 가끔, 거의 안 함) 간의 관계를 분석하는 경우
2. 피셔 검정
피셔 검정은 카이제곱 검정과 마찬가지로 두 범주형 변수 간의 독립성을 검정하는 데 사용되지만, 표본의 크기가 작거나 기대 빈도가 작은 경우에 더 적합한 검정 방법이다.
1) 원리 : 관찰된 빈도를 기반으로 모든 가능한 공간을 고려해서 정확한 p값을 계산한다.
2) 장점 : 표본 크기가 작거나 기대 빈도가 작은 경우에도 정확한 결과를 제공한다.
3) 단점 : 계산이 복잡해 소프트웨어를 이용해야 한다.
4) 예시 : 희귀 질환 환자 10명과 건강한 대조군 10명을 대상으로 특정 유전자 변이 유무를 비교하는 경우
3. 카이제곱 검정과 피셔 검정의 차이점 요약
구분 | 카이제곱 검정 | 피셔 검정 |
원리 | 관찰빈도와 기대빈도 비교 |
모든 가능한 표본 공간 고려
|
적용 | 표본 크기가 크고, 기대 빈도가 충분할 때 |
표본 크기가 작거나, 기대 빈도가 작을 때
|
정확도 | 근사적인 값 | 정확한 값 |
계산 | 간단 | 복잡 |
4. 어떤 검정을 사용할까?
1) 기대 빈도 : 일반적으로 각 셀의 기대 빈도가 5 이상이면 카이제곱 검정을 사용하고, 5 미만인 셀이 많으면 피셔 검정을 사용한다.
2) 표본 크기 : 표본 크기가 작을수록 피셔 검정을 사용하는 것이 더 안전하다.
3) 소프트웨어 기능 : 사용하는 소프트웨어에서 어떤 검정을 지원하는지 확인한다.
'통계' 카테고리의 다른 글
전향적 코호트 연구란? (0) | 2024.12.02 |
---|---|
변수의 척도 : 명목, 서열, 증간, 비율 척도 자세하게 알아보기 (1) | 2024.11.30 |
통계방법 : 기술통계와 추론통계 (0) | 2024.11.30 |
환자-대조군 연구 : 질병의 원인을 밝히는 열쇠 (2) | 2024.11.30 |
단면조사연구 특징, 장점, 단점, 예시 (0) | 2024.11.30 |